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ABSTRACT

E2E web test suites are prone to test dependencies due to the het-
erogeneous multi-tiered nature of modern web apps, which makes
it difficult for developers to create isolated program states for each
test case. In this paper, we present the first approach for detecting
and validating test dependencies present in E2E web test suites.
Our approach employs string analysis to extract an approximated
set of dependencies from the test code. It then filters potential false
dependencies through natural language processing of test names.
Finally, it validates all dependencies, and uses a novel recovery al-
gorithm to ensure no true dependencies are missed in the final test
dependency graph. Our approach is implemented in a tool called
TEDD and evaluated on the test suites of six open-source web apps.
Our results show that TEDD can correctly detect and validate test
dependencies up to 72% faster than the baseline with the original
test ordering in which the graph contains all possible dependen-
cies. The test dependency graphs produced by TEDD enable test
execution parallelization, with a speed-up factor of up to 7×.
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1 INTRODUCTION

Ideally, all tests in a test suite should be independent. However,
in practice, developers create tests that are dependent on each
other [2, 12, 17, 21, 42]. Test dependency can be informally de-
fined as follows. Let T = ⟨t1, t2, . . . , tn⟩ be a test suite, where each
ti is a test case, whose index i defines an order relation between
test cases that corresponds to the original execution order given by
testers. When tests within T are executed in the original order, all
tests execute correctly. If the original execution ordering is altered,
e.g., by executing t2 before t1, and the execution of t2 fails, we can
say that t2 depends on t1 for its execution, and that a manifest test

dependency exists [12, 42].
Test dependencies inhibit the use of test optimization techniques

such as test parallelization [1], test prioritization [33], test selec-
tion [14] and test minimization [39], which all require having in-
dependent test cases. Furthermore, test dependencies can mask
program faults and lead to undesirable misleading side-effects, such
as tests that pass when they should fail, tests that fail when they
should pass [23, 42], or significant test execution overheads [2, 21].

Web developers frequently use end-to-end (E2E) test automation
tools, which verify the correct functioning of the application in
given test scenarios by means of automated test scripts. Such scripts
automate themanual operations that the end user would perform on
the web application’s graphical user interface (GUI), such as deliver-
ing events with clicks, or filling in forms [5–7, 11, 13, 18, 26–28, 37].
Unlike traditional unit tests, E2E tests focus on whole business-
oriented scenarios, such as logging into the web application, adding
items to a shopping cart, and checking out. Such test scenarios
go through all tiers and involve all services required to make the
whole application work. Thus, in web testing, it can be difficult
to enforce isolation, as web tests might use the application state
which is promptly available from previous test case executions (i.e.,
a polluted state [17]). This creates potential test dependencies due
to read-after-write operations performed on persistent data such
as database records or Document Object Model (DOM) fragments
that are written by a test ti and later accessed by a successive test
tj (where j > i).

Automated detection of all test dependencies in any given test
suite is NP-complete [42]. As such, researchers have proposed tech-
niques and heuristics that help developers detect an approximation
of such dependencies in a timely manner [2, 12, 17, 21, 42]. In this
work, we focus on automatically detecting test dependencies in E2E
web tests. Existing tools such as DTDetector [42], ElectricTest [2]

https://doi.org/10.1145/3338906.3338948
https://doi.org/10.1145/3338906.3338948
https://doi.org/10.1145/3338906.3338948


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia M. Biagiola et al.

or PRADET [12] are not applicable because they are based on the
extraction of read/write operations affecting shared data (e.g., static
fields) of Java objects. Instead, web applications are prone to depen-
dencies due to the persistent data managed on the server-side and
the implicit shared data structure on the client-side represented by
the DOM. Such dependencies are spread across multiple tiers/ser-
vices of the web application architecture and are highly dynamic in
nature. Hence, existing techniques based on static code analysis are
not directly applicable. The web test dependency problem demands
for novel approaches that leverage the information available in the
web test code and on the client side.

In this paper, we propose a novel test dependency detection
technique for E2Eweb test cases based on string analysis and natural
language processing (NLP). Our approach is implemented in a tool
called TEDD (Test Dependency Detector), which supports efficient
and conservative detection and validation of test dependencies in
an E2E test suite using only client-side information, which makes
it independent of the server-side technology.

TEDD extracts an initial approximated dependency graph (TDG).
Then, it filters potentially false dependencies in order to speed up
the validation process. Afterwards, it validates each dependency by
dynamic analysis and it recovers any manifest dependency that is
potentially missing in the initial and/or filtered graph.

The output of TEDD is a validated TDG, which ensures that any
test execution schedule that respects its dependencies will not result
in any test failure. In our empirical study on six web test suites,
TEDD produced the final TDGs 72% faster than a baseline approach
that validates all possible dependencies (57%, on average). Also, the
test suites parallelized by TEDD according to the dependencies in
the final TDGs achieved a speedup up to 7× (2× on average).

Our paper makes the following contributions:

• The first test dependency detection approach for web tests.
Our approach introduces string analysis (SA) to extract an
approximated set of test dependencies, and NLP/SA to filter
potential false dependencies.
• An algorithm to automatically retrieve all missing depen-
dencies from any given web test dependency graph.
• An implementation of our algorithm in a tool named TEDD,
which is available [38].
• An empirical evaluation of TEDD on a benchmark of six
open-source web test suites, comprising 196 test cases.

2 BACKGROUND AND MOTIVATION

Ideally, running the tests in a test suite in any order should produce
the same outcome [12]. This means tests should deterministically
pass or fail independently from the order in which they are executed.
A test dynamically alters the state of the program under test in order
to assert its expected behaviour. In practice, some tests fail to undo
their effects on the program’s state after their execution, which can
pollute any shared state [17] in tests executed subsequently.

In the web domain, testers perform end-to-end (E2E) testing of
their applications [4, 11] by creating test cases using test automa-
tion tools such as Selenium WebDriver [34]. Such tests consist of
(1) actions that simulate an end-user’s interactions with the appli-
cation, and (2) assertions on information retrieved from the web
page to verify the expected behaviour. Unlike unit testing, in which

Table 1: Test cases for Claroline, numbered according to

their test execution order [24].

Test Name Description

t1 addUserTest The admin creates a new user account.
t2 searchUserTest The admin searches for the newly created user.
t3 loginUserTest The newly created user logs in to the application.
t4 addCourseTest The admin creates a new course.
t5 searchCourseTest The admin searches for the newly created course.
t6 enrolUserTest The user enrols herself in the course.

1 @Test
2 public void addUserTest () {
3 driver.findElement(By.id("login")).sendKeys("admin");
4 driver.findElement(By.id("password")).sendKeys("admin");
5 driver.findElement(By.xpath("// button")).click();
6 driver.findElement(By.linkText("Platform administration")).click();
7 driver.findElement(By.linkText("Create user")).click();
8 driver.findElement(By.id("lastname")).sendKeys("Name001");
9 driver.findElement(By.id("firstname")).sendKeys("Firstname001");
10 driver.findElement(By.id("username")).sendKeys("user001");
11 driver.findElement(By.id("password")).sendKeys("password001");
12 driver.findElement(By.id("password_conf")).sendKeys("password001");
13 assertEquals("The new user has been created", driver.findElement(By.←↩

xpath("//*[ @id='claroBody ']")).getText ());
14 driver.findElement(By.id("logout")).click();
15 }
16 @Test
17 public void searchUserTest () {
18 driver.findElement(By.id("login")).sendKeys("admin");
19 driver.findElement(By.id("password")).sendKeys("admin");
20 driver.findElement(By.xpath("// button")).click();
21 driver.findElement(By.linkText("Platform administration")).click();
22 driver.findElement(By.id("search_user")).sendKeys("user001");
23 driver.findElement(By.cssSelector("input[type='submit ']")).click();
24 assertEquals("Name001" ,driver.findElement(By.id("L0")).getText ());
25 assertEquals("Firstname001",driver.findElement(By.xpath("//td[3]")).←↩

getText ());
26 driver.findElement(By.id("logout")).click();
27 }

Figure 1: Two dependent E2Eweb tests for the Claroline web

application. Potential dependencies due to shared input data

are highlighted.

tests target specific class methods, web tests simulate E2E user
scenarios, and therefore the program state that persists across test
case executions might be left polluted, causing test failures if tests
are reordered.
Motivating Example. Table 1 lists six E2E Selenium WebDriver
tests for the Claroline web application [24], one of the subject test
suites used in our evaluation.

Figure 1 shows dependencies between tests t1 and t2. The test
case addUserTest logs in to the application with the administrator
credentials (lines 3–5), it navigates to the create user page (lines 6–
7), it creates a new user account having username user001 by filling
in and submitting the appropriate form (lines 8–12), and it finally
verifies that a message is correctly displayed (line 13).

The execution of addUserTest pollutes the state of the web ap-
plication, which is used by the subsequent test searchUserTest to
search for the same user user001 created by addUserTest (line 22).
Thus, the shared input data user001 might reveal a potential de-
pendency between the tests (see highlighted inputs in Figure 1).

Tomake these two tests independent and avoid polluted program
states, a tester, for instance, should (1) delete the user user001
created in addUserTest, to clean the polluted program state, and
(2) re-create the same user (or a different one) in searchUserTest.
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Figure 2: Our overall approach for web test dependency detection, validation and recovery.
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Figure 3: Test dependency graph for the test suite of Table 1.

Solid edges represent manifest dependencies, namely, de-

pendencies that result in a different outcome if unrespected.

In practice, however, testers re-use states created by preceding
tests to avoid test redundancy, higher test maintenance cost and
increased test execution time [25]. In doing so, they also enforce
pre-defined test execution orders, which in turn inhibit utilizing
test optimization techniques such as test prioritization [33].
Test Dependency Graph. Dependencies occurring between tests
can be represented in a test dependency graph (TDG) [12], a di-
rected acyclic graph in which nodes represent test cases and edges
represent dependencies. TDG contains an edge from a test t2 to a
test t1 if t2 depends on t1 for its execution (notationally, t2 → t1).

Figure 3 illustrates the actual test dependency graph (TDG) for
the test suite of Table 1. For example, TDG contains an edge from
searchCourseTest to addCourseTest because searchCourseTest
requires the execution of addCourseTest to produce the expected
result (in other words, addCourseTest must be executed before

searchCourseTest in order for it to succeed). Multiple test depen-
dencies can also occur. For instance, enrolUserTest depends on
both addUserTest and addCourseTest for its correct execution.

In order to be useful, TDG should contain all manifest dependen-

cies, i.e., dependencies that do cause tests to fail if violated, while
retaining the minimum number (or none) of false dependencies.

One possible application of a TDG that contains only manifest
dependencies is test suite parallelization. For instance, if we tra-
verse the graph of Figure 3 and extract the subgraphs reachable
from each node with zero in-degree (in our example, there is only
addUserTest), we can identify subsets of tests that can be be exe-
cuted in parallel with the others. In our example, four parallel test
suites are possible: { ⟨t1, t2⟩, ⟨t1, t3⟩, ⟨t1, t4, t6⟩, ⟨t4, t5⟩ }.

3 APPROACH

The goal of our approach is to automatically detect the occurrence of
dependencies among web tests. Detecting dependencies in E2E web

tests is particularly challenging due to the stack of programming
languages and technologies involved in the construction of modern
web applications, e.g., HTML, CSS, JavaScript on the client side;
PHP, Java or JavaScript on the server-side, and back-end layers
through Restful APIs or databases.

Our insight is that by analyzing the input data used in test cases
(highlighted in Figure 1), we can obtain clues about potential test
dependencies caused by shared polluted states. For example, the
input string user001 used at line 10 in addUserTest is a write op-
eration of persistent data. The same input string is used at line 22
in searchUserTest as a read operation of persistent data. We con-
jecture that such read-after-write connections on persistent data
could indicate potential test dependencies. Given this insight, our
approach focuses on read-after-write relationships on persistent
data, defined as follows.

Definition 1 (Persistent Read-After-Write (PRAW)

Dependency). Two test cases t1 and t2 executed in this order in the
original test suite are subject to a PRAW dependency if t1 performs an

operation that writes some information Si into the persistent state of
the web application and t2 performs an operation that reads Si from
the persistent state of the web application.

Examples of the write operations in t1 include creating, updating
or deleting a record in a database, or creating a DOM element on the
webpage. Examples of read operations in t2 are reading the same
record from the database, or accessing the newly created DOM
element on the webpage.

Figure 2 illustrates our overall approach, which requires a web
test suite as input, along with a predefined test execution order.
Overall, our approach ❶ computes an initial approximated test
dependency graph, ❷ filters out potential false dependencies, ❸ dy-
namically validates all dependencies in the graph while recovering
any missing dependencies, and, finally, ❹ handles missing depen-
dencies affecting independent nodes possibly resulting from the
previous validation step.

Next, we describe each step of our approach.

3.1 Dependency Graph Extraction

In the first step, from the input test suite, our approach computes
an initial test dependency graph representing an approximated set
of candidate dependencies. This can be conducted in different ways,
as described below.
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Algorithm 1: Sub-use string analysis graph extraction
Input :To : test suite in its original order o, I: set of input-submitting actions
Output :TDG : test dependency graph with candidate dependencies to be validated

1 TDG ← ∅
2 Ta ← To ▷ tests to analyze

3 foreach t in To do

4 S ← getInputValues(t , I) ▷ S is the set of input values submitted by t
5 Ta ← Ta − {t }
6 foreach tf in Ta do

7 U ← findUsedValues(tf ) ∩ W ▷ U is the set of input values used by tf
8 if U , ∅ then

9 depToAdd← (tf
U
−−→ t ) ▷ candidate manifest dependency

10 TDG ← TDG ∪ { depToAdd }
11 end

12 end

13 end

3.1.1 Original Order Graph Extraction. A baseline approach con-
sists of connecting all pairwise combinations of tests according to
the original order. This results in a directed graph in which every
pair of distinct nodes is connected by a unique pair of edges, so as
to establish a dependency relation between each test and all the
others that are executed before it. If n is the number of test cases in
the test suite, the graph contains n(n−1)

2 edges (e.g., dependencies).
Since the time to validate a dependency graph increases with

the number of dependencies in the graph, heuristics can be used to
reduce the size of the graph by removing edges that are less likely
to be manifest dependencies. To that end, we propose an approach
that leverages a fast static string analysis of the input data present
in the tests, to construct a smaller initial test dependency graph.

3.1.2 Sub-Use String Analysis Graph Extraction. Algorithm 1
describes our dependency graph extraction based on sub-use-chain
relations. A sub-use relation consists of a submission (sub) of input
data i and all the following uses that submitted value i .

Starting from the first test case according to the original test suite
order, Algorithm 1 first retrieves the set S of input values submitted

by the test, like values inserted into input fields by input-submitting
actions such as the sendKeys methods (line 4).

Second, the algorithm considers each test case tf following t
and searches for any input value in the set S, which is used in any
statement of the current test case tf (line 7), and adds them to the
set of used values U. If at least one string value is found (i.e., a
sub-use chain), a candidate PRAW dependency between t and tf
is created by adding the edge tf → t , labelled with each retrieved
string value (line 9), to the test dependency graph (line 10).

The internal loop of Algorithm 1 (lines 6–12) searches for the
input values indistinctly in any test action because in web tests
there is no clear distinction between read and write statements.
For instance, in Figure 1, the sendKeys action at line 10 is used to
write persistent information into the application (e.g., in a database).
However, the same sendKeys action, at line 22, identifies an action
with a read connotation, because the string value user001 is used to
search for a specific persistent information in the web application.

Let us consider the source code of the two test cases in Figure 1,
namely addUserTest and searchUserTest. From the first test
addUserTest, the algorithm extracts the set S = {admin, Name001,
Firstname001, user001, password001} because sendKeys is the
only input-submitting action. Then, the string values in S are
looked up in the subsequent test searchUserTest, producing the

set of used valuesU = {admin, Name001, Firstname001, user001}.
BeingU not empty, the algorithm creates a candidate test depen-
dency between searchUserTest and addUserTest.

3.2 Filtering

The second step of our approach applies a filtering process to
remove potential false PRAW dependencies. The filtering is per-
formed to speed up the subsequent validation step, which requires
in-browser test execution, and therefore can be computationally
expensive for graphs with numerous candidate test dependencies.
Finding an effective filtering technique is, however, challenging.
A loose filter might remove a few false dependencies, whereas a
strict filter might mistakenly remove manifest dependencies, which
would need to be recovered at a later stage.

In this work, we propose two novel test dependency filtering
techniques based on (1) dependency-free values, and (2) Natural
Language Processing (NLP).

3.2.1 Dependency-free String Value Filtering. We analyze the
frequency of string input values used in the test suite to filter
potential false PRAW dependencies.

Let us consider the test dependency graph depicted in Figure 4,
obtained by applying our sub-use string analysis graph extraction
(Section 3.1.2) to the motivating example test suite (Section 2).

t1 
addUserTest

t6 
enrolUserTest

t5 
searchCourseTest

t4  
addCourseTest

t2  
searchUserTest

t3  
loginUserTest

user001
password001

user001
password001

user001
password001
FirstName001
Name001

user001

user001

admin
admin

admin
admin

admin
admin

Course001 Course001

admin
admin
Course001

Name001
FirstName001
user001

Figure 4: Dependency-free string-based PRAW filtering.

Solid black edges represent manifest dependencies whereas

dashed red edges represent false dependencies.

The set of dependencies { t5 → t2, t5 → t1, t4 → t1 } represents
instances of false candidate PRAW dependencies. The edges be-
tween these test cases are only due to the same login input data
used by the tests—i.e., admin—a default user created during the
installation, for which no test case must be executed to create it.

Existing techniques [12, 42] refer to such cases as dependency-
free values, i.e., if the test dependency graph includes dependencies
that are shared across multiple (or all) test cases, these likely-false
dependencies could be filtered out.

However, in principle, these assumptions might not hold in all
cases, as occurrence frequency alone is not conclusive for safe
filtering. Our dependency-free string value filtering computes a
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ranked list of frequently occurring strings and asks the developer
to either confirm or discard them (if a string value occurs in all test
cases, the corresponding dependency is automatically filtered).

In our example of Figure 4, our approach computes the frequen-
cies of all strings, presents it to the the tester, who, for instance,
may decide to filter the dependencies due to the admin string, hence
removing t5 → t2, t5 → t1, t4 → t2.

3.2.2 NLP-based Filtering. Developers often use descriptive pat-
terns for test case names, which summarize the operations per-
formed by each test. Giving a descriptive name to a test case has
several advantages such as enhanced readability (i.e., it becomes
easier to understand what behaviour is being tested) and debugging
(i.e., when a test case fails, it is easier to identify the broken func-
tionality). For instance, Google recommends test naming conven-
tions [15, 16] in which unit tests need to be named with the method
being tested (a verb or a verb phrase, e.g., pop) and the applica-
tion state in which the specific method is tested (e.g., EmptyStack).
For behaviour-based tests such as E2E tests [16], the guidelines
propose a naming convention that includes the test scenario (e.g.,
invalidLogin) and the expected outcome (e.g., lockOutUser).

Therefore, our second filtering mechanism consists of using
Natural Language Processing (NLP) to analyze test case names and
classify them into two classes, namely, read or write. Then, based
on such classification, non-PRAW dependencies, such as a “read”
test being dependent on another “read” test, are discarded from the
test dependency graph.

Our approach uses a Part-Of-Speech tagger (POS) to classify each
token (i.e., word) in a tokenized test name as noun, verb, adjective,
or adverb. In particular, our approach uses the verb from the test
case name as the part of speech that conveys the nature of the test
operation, and uses it to classify each test into read or write classes.
Our approach relies on two groups of standardized R/W verbs,
namely CRUD operations—Create, Read, Update and Delete) [10]—
in which the Read operation is pre-classified as read whereas the
other three are pre-classified as write.

Our approach uses POS to extract the first verb from each test
name and then computes the semantic similarity [32] (specifically,
theWUP metrics [41]) between the extracted verb and each verb in
the pre-classified read/write groups. The similarity score quantifies
how much two concepts are alike, based on information contained
in the is–a hierarchy of WordNet [30]. After computing all similar-
ity scores, our approach classifies the extracted verb to the group
having the maximum similarity score. In case of ties (e.g., the verb
has the same similarity score for both the read and write classes),
or in case no verbs are found, our approach does not perform any
assignment and the dependency is not filtered. Our classification
of read/write verbs achieved a precision of 80% and a recall of 94%
on our experimental subjects.

In this work, we propose and evaluate three NLP configurations.
Verb only (NLPVerb).Our first NLP filtering configuration consid-
ers only the verb of the test case name. Given a dependency ty → tx ,
our approach extracts the verb from both ty and tx , and classifies
them either as read or write. Then, it filters (1) the read-after-read
(RaR) dependencies, in which both ty and tx have verbs classified
as read, and (2) the write-after-read (WaR) dependencies, where
ty has a write-classified verb whereas tx has a read-classified verb.

All other types of dependencies, such as read-after-write (RaW)
and WaW (write operations in web applications often also involve
reading existing data), are retained.

The dependency searchCourseTest→ searchUserTest (Fig-
ure 4) is filtered because it is classified as RaR, with search being
the read-classified verb. Conversely, the edge searchUserTest→
addUserTest is retained since it is classified as RaW, being search
and add the read/write verbs, respectively. The word Test is con-
sidered a stop word and removed before the NLP analysis starts.
Verb and direct object (NLP Dobj). The second configuration
considers the direct object the verb refers to. Given a set of test cases,
our approach uses a dependency parser to analyze the grammatical
structure of a sentence, extract the direct object from each test
name, and construct a set of “dobject” dependencies.

RaR and WaR dependencies are filtered as described in the pre-
vious NLP Verb case. Differently, RaW and WaW dependencies are
filtered only if the direct objects of two verbs appearing in two tests
ty and tx are different. The intuition is that the two tests may per-
form actions on different persistent entities of the web application,
if the involved direct objects in the test names are different. For
example, in Figure 4, the RaW dependency searchCourseTest→
addUserTest is filtered because the two involved direct objects,
Course and User, are different.
Verb and nouns (NLP NOUN). Our third configuration takes into
account all entities of type noun contained in the test names. When
the test name includesmultiple, different entities, analyzing only the
direct object may not be enough to make a safe choice. For instance,
in our subject Claroline, the analysis of the direct object would
erroneously filter the manifest dependency addCourseEventTest
→ addCourseTest, because it is a WaW and the two direct objects
Event and Course are different. However, there is an implicit rela-
tion between the direct object Event and the Course object it refers
to. Thus, the dependency with addCourseTest should be retained.

Again, RaR and WaR dependencies are filtered as described in
the NLP Verb case. Here, RaW and WaW dependencies are filtered
only if the two tests involved in a dependency have no noun in com-
mon. As such, the manifest dependency addCourseEventTest→
addCourseTestwould not be filtered in this configuration, because
of the shared name Course.

3.3 Dependency Validation and Recovery

Given a test dependency graph TDG, the overall dynamic depen-
dency validation procedure works according to the iterative process
proposed by Gambi et al. [12]. The approach executes the tests ac-
cording to the original order to store the expected outcome. Next,
it selects a target dependency according to a source-first strategy
in which tests that are executed later in the original test suite are
selected first (i.e., t3 → t2 would be selected before t2 → t1).

To validate the target dependency, tests are executed out of order,
i.e., a test schedule in which the target dependency is inverted is
computed and executed. If the result of the test execution differs
from the expected outcome, the target dependency is marked as
manifest, because the failure was due to the inversion. Otherwise,
the target dependency is removed from TDG. The process iterates
until all dependencies are either removed or marked as manifest.
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Algorithm 2: Recovery algorithm
Input :To : test suite in its original order o

TDG : test dependency graph
targetDep: dependency selected for validation
expResults: results of executing To
execResults: results of a test schedule in which targetDep is inverted

Output :TDG : updated test dependency graph with missing dependencies recovered
Require : expResults , execResults, i.e., targetDep is manifest

1 schedule← computeTestScheduleWithNoInversion(TDG , targetDep)
2 execResults← executeTestSchedule(schedule)
3 failedTest← getFirstFailedTest(expResults, execResults)
4 if failedTest , null then

5 /* Failure due to a missing dependency; get all tests before failedTest. */
6 depCandidates← getDepCandidates(To , schedule)
7 foreach depCandidate ∈ depCandidates do

8 depToAdd← ⟨ failedTest→ depCandidate ⟩

9 TDG ← TDG ∪ {depToAdd}
10 end

11 end

The dynamic validation procedure described above works cor-
rectly under the assumption that the initial TDG contains all man-
ifest dependencies (as the original order graph Section 3.1.1). In
our approach, the filtering techniques applied in the previous step
may be not conservative. Therefore, differently from existing tech-
niques [12], our approach features a dynamic dependency recovery
mechanism that retrieves all missing dependencies. To the best of
our knowledge, this is the first dependency validation algorithm
that also includes dynamic dependency recovery.
RecoveringMissingDependencies.Algorithm 2 takes a partially-
validated TDG. For each failing test schedule in which a target
dependency is inverted, it checks whether the failure is due to a
missing dependency in the dependency graph.

More specifically, Algorithm 2 takes the target dependency and
computes a schedule in which the target dependency is not in-
verted (line 1). If the execution of such schedule complies with the
expected outcome, our approach considers the test failure due to
the dependency inversion and marks the dependency as a mani-
fest. On the contrary, if one or more tests fail also in the schedule
without inversion (line 4), our approach assumes that one or more
dependencies are missing and need to be recovered.

To do so, the algorithm takes the first failing test and retrieves
the preceding test cases that were not executed in the schedule
(line 6). Those tests are all candidate manifest dependencies for
the failed test. The algorithm connects the failed test case with
each such preceding test and adds those dependencies to the graph
(lines 8–9). The graph obtained this way contains all newly added
candidate manifest dependencies that still need to be validated.
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Figure 5: Recovery of missing dependencies. (A) t4 → t3 is

selected, t4 fails because t4 → t2 is missing. (B) recovery pro-

cedure adds candidate dependencies. (C) dependency valida-

tion. (D) final TDG.

Let us take as example Figure 5.A, in which t4 has a missing

manifest dependency on t2, and t3 does not modify the application
state. According to the source-first strategy, the validation selects
the dependency t4 → t3 . The schedule computed for such depen-
dencies is ⟨t4⟩, in which t4 fails because t2 is not executed. Then, our
algorithm starts retrieving the missing dependency by computing a
schedule in which t4 → t3 is not inverted, ⟨t3, t4⟩, in which t4 fails
again for the same reason. The recovery procedure concludes that
there is at least one missing dependency, and connects t4 with both
t1 and t2 (Figure 5.B), i.e., the only candidate manifest dependencies.

In Figure 5.C the dependency t4 → t3 is selected again. This time,
the computed schedule is ⟨t1, t2, t4⟩, in which none of the tests fail.
Therefore, the dependency is marked as false and removed. The
next selected dependency is t4 → t2, for which the schedule ⟨t1, t4⟩
is computed. The test t4 fails because t2 is not executed. To check if
the failure is due to a missing dependency, our algorithm computes
the test schedule ⟨t1, t2, t4⟩, in which none of the tests fail. Our
algorithm concludes that t4 → t2 is a manifest dependency and
recovers it. The validation iterates over the other dependencies in
the same way and outputs the final TDG (Figure 5.D), where the
initially missing dependency has been recovered.

3.4 Disconnected Dependency Recovery

The previous validation step ❸ can produce disconnected com-
ponents in the TDG. Missing dependencies involving tests in dis-
connected components require a separate treatment. Two cases
can occur (1) tests with no outgoing edges (zero out-degree),1 and
(2) isolated tests, i.e., tests having neither incoming nor outgoing
edges (zero in- and out-degree).

The former case occurs when a false dependency, removed dur-
ing the validation, shadows a missing dependency. In such cases,
disconnected components of TDG, including potentially missing
dependencies, are created as a result of the validation.
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Figure 6: Disconnected dependency recovery. (A) dependen-

cies are validated; t3 → t1 shadows the missing dependency

t4 → t1. (B) t4 and t2 fail because of missing dependencies.

(C) recovery procedure adds candidate dependencies. (D) de-

pendencies are validated. (E) final TDG.

Figure 6.A illustrates an example: the manifest dependency t4 →
t1 is missing in the initial dependency graph. Let us suppose that
t3 does not change the state of the application when executed, and
therefore, its execution does not influence the execution of any
other successive test in the original order. The algorithm selects
first the dependency t4 → t3, it produces the schedule ⟨t4⟩, in which
the test fails since t1 is not executed. Our approach checks if the
failure is due to a missing dependency. When the dependency is
not inverted, the computed schedule is ⟨t1, t3, t4⟩, in which none
1First test t1 excluded
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of the tests fail. Hence, our algorithm concludes that t4 → t3 is
a manifest dependency and no dependency recovery takes place.
In the next step, the algorithm validates the dependency t3 → t1,
which is removed because t3 can execute successfully without t1.
The dependency graph produced by dependency validation algo-
rithm is illustrated in Figure 6.B. In the isolated subgraph t4 → t3
the schedule ⟨t3,t4⟩ results in a failure of t4. Indeed, the depen-
dency t4 → t1 was not captured by the recovery algorithm because
the false dependency t3 → t1 shadowed the absence of the manifest

dependency t4 → t1.
Figure 6.A also illustrates how our approach handles isolated

tests. In this example, t2 is an isolated node. Let us suppose that
t2 has a manifest dependency on t1 (t2 → t1), which is missing in
the initial TDG because it is either not captured, or because it is
wrongly filtered out in the second step of our approach. Therefore,
the validation step would produce theTDG shown in Figure 6.B, in
which there is no chance to check whether t2 executes successfully
in isolation. In fact, t2 is not part of any test schedule that can
be generated from TDG, regardless of any possible dependency
inversion. For this reason, a further recovery step is required once
the validation is completed.

Algorithm 3: Disconnected dependency recovery algo-
rithm
Input :To : test suite in its original order o

TDG : test dependency graph
Output :TDG : updated test dependency graph with missing dependencies recovered

1 expResults← executeTestSuite(To )
2 /* Get isolated nodes and nodes with no outgoing edges. */
3 disconnectedTests← getDisconnectedTests(TDG )
4 foreach disconnectedTest in disconnectedTests do

5 execResults← executeTestInIsolation(disconnectedTest)
6 failedTest← getFailedTest(expResults, execResults)
7 if failedTest , null then

8 TDG ← connectWithPrecedingTests(failedTest, TDG , To )
9 else if isNotIsolated(disconnectedTest) then

10 /* Out-degree = 0; in-degree > 0. */
11 schedules← computeSchedules(disconnectedTest, TDG )
12 foreach schedule ∈ schedules do

13 execResults← exec(schedule)
14 failedTest← getFailedTest(expResults, execResults)
15 if failedTest , null then

16 TDG ← connectWithPrecedingTests(failedTest,TDG , To )
17 end

18 end

19 end

20 end

Algorithm 3 handles the recovery ofmissing dependencieswithin
disconnected components. The algorithm retrieves all isolated nodes
and zero out-degree nodes (line 3) and executes each of them in iso-
lation (line 5). For each failing test, the algorithm connects it with
all preceding tests according to the initial test suite order (line 8).
Otherwise, if a test is not isolated and executes successfully (line 9),
the algorithm takes all schedules that contain that test and execute
them (lines 12–18). If a test in those schedules fails, the algorithm
connects it with all the preceding ones (line 16).

Finally, for each dependency found and added toTDG during the
disconnected dependency recovery step, the dependency validation
procedure must be re-executed.

Given the graph in Figure 6.B, Algorithm 3 executes t2 in isola-
tion, which fails, thus the dependency t2 → t1 is added. Moreover,
in Figure 6.B, there is only one schedule that involves t3, namely

⟨t3,t4⟩. In this schedule t4 fails, hence our approach adds the de-
pendencies t4 → t2 and t4 → t1 (Figure 6.C). Next, the added
dependencies are validated (Figure 6.D), and the final graph is pro-
duced, where all initially missing manifest dependencies have been
successfully recovered (Figure 6.E).

To conclude, our validation and recovery algorithms makes sure
that (1) newly added dependencies are themselves validated, (2) false
dependencies are removed in the final TDG. Indeed, a node in the
final TDG can be either (i) connected (i.e., in-degree > 0 and out-
degree > 0), (ii) without outgoing edges (i.e., in-degree > 0 and
out-degree = 0) or (iii) isolated (i.e., in-degree = out-degree = 0).

3.5 Implementation

We implemented our approach in a Java tool called TEDD (Test
Dependency Detector), which is available [38]. The tool supports
Selenium WebDriver web test suites written in Java. TEDD expects
as input the path to a test suite and performs the string analysis
by parsing the source code of the tests by using Spoon (version
6.0.0) [31]. Our NLP module adopts algorithms available in the
open-source library CoreNLP (version 3.9.2) [9]. The output of
TEDD is a list of manifest dependencies extracted from the final
validated TDG.

4 EMPIRICAL EVALUATION

We consider the following research questions:
RQ1 (effectiveness): How effective is TEDD at filtering false de-
pendencies without missing dependencies to be recovered?
RQ2 (performance): What is the overhead of running TEDD?
What is the runtime saving achieved by TEDD with respect to
validating complete test dependency graphs?
RQ3 (parallel test execution):What is the execution time speed-
up of the test suites parallelized from the test dependency graphs
computed by TEDD?

4.1 Subject Systems

We selected six open-source web applications used in previous web
testing research [24]. Each subject comes with one JUnit 4 test suite
containing between 22-41 Selenium test cases; a JUnit test runner
class specifies the tests order provided by the developer. Table 2
lists our subject systems, including their names, version, size in
terms of lines of code, number of test cases, and the total number
of lines of test code counted with cloc [8].

Table 2: Subject systems and their test suites

Web App Test Suites
Version LOC # LOC (Avg/Tot)

Claroline 1.11.10 352,537 40 46/1,822
AddressBook 8.0.0 16,298 27 49/1,325
PPMA 0.6.0 575,976 23 54/1,232
Collabtive 3.1 264,642 40 48/1,935
MRBS 1.4.9 34,486 22 51/1,114
MantisBT 1.1.8 141,607 41 43/1,748
Total 866,995 196 47/9,176
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4.2 Procedure and Metrics

4.2.1 Procedure. We manually fixed any flakiness of the test
cases of the subject test suites by adding delays where appropriate
and we executed each test suite 30 times to ensure that identical
outcomes are obtained across all executions.

To form a baseline for comparison, we applied dependency vali-
dation to the dependency graph obtained from the original order
of each test suite (Section 3.1.1). Essentially, our baseline approach
represents the execution of Pradet’s [12] heuristics on the TDGs
obtained from the original test suites.

For each test suite, we ran different configurations of TEDD, by
combining each admissible combination of graph extraction and fil-
tering technique. The first evaluated configuration is String Analysis
(SA), in which the dependency graph is obtained through sub-use
chain extraction (Section 3.1.2) and filtered from the dependency-
free values (Section 3.2.1). Then, we evaluated three configurations
in which we applied the three proposed NLP filters (NLP-Verb, NLP-
Dobj, NLP-Noun) both to the graph from the original order as well
as to the graph obtained with SA.

Finally, given the validated dependency graph obtained in each
configuration, we generated all possible parallel test schedules auto-
matically, by traversing the final validated TDG from dependents to
dependees, until all tests are included. Each parallelized test suite
was executed sequentially.

4.2.2 Metrics. To assess effectiveness (RQ1), for each configu-
ration we measured the number of false dependencies removed by
TEDD as well as the number of manifest dependencies that are
missing and need to be recovered. The number of false dependencies
is obtained by subtracting the number of manifest dependencies
retrieved at the end of the recovery step from the total number of
dependencies in the initial graph.

We evaluated performance (RQ2) by comparing the execution
time (in minutes) of each configuration of TEDD with respect to
the baseline approach.

Concerning parallelization (RQ3), we measured the speed-up
factor of the parallelizable test suites with respect to the original
test suite running time. We considered two speed-up scenarios.
(1) average case, in which we measured the ratio between the orig-
inal test suite running time and the average running time of the
parallelizable test suites, and (2) worst case, in which we measured
the speed-up ratio between the original test suite running time and
the parallelizable test suite having the highest runtime.

4.3 Results

Effectiveness (RQ1). For each configuration of TEDD, Table 3
(Effectiveness) shows the number of extracted dependencies starting
from the initial test suite (Figure 2, step ❶) and the number of
filtered dependencies (Figure 2, step ❷). It also reports information
about the validation and recovery steps, specifically the number of
false dependencies detected, the number of dependencies recovered
and those recovered from the disconnected components. The final
number (Column 8) shows the number of dependencies in the final
TDGs, all of which are manifest PRAW dependencies.
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Figure 7: Pareto front

Across all apps, the baseline approach validated on average 536
dependencies, of which 504 were deemed as false, and 32 as mani-
fest. The most conservative among TEDD’s configurations is NLP-
Verb (Original Order), which validated overall 416 dependencies, of
which 384 were false (24% less than the baseline) and detecting 32
manifest dependencies without filtering/recovering any. The least
conservative configuration of TEDD is NLP-Noun (String Analysis)
which retained only 143 dependencies on average from the ini-
tial graphs, of which 110 were detected as false, five dependencies
had to be recovered, leading to the final number of 33 manifest
dependencies. Overall, the number of missing dependencies due to
filtering and recovered in steps ❸ ❹ is very low (1% of the initial
number of dependencies).

TEDD does not ensure having minimal test dependency graphs.
Therefore, the number of manifest dependencies retrieved by each
configurations is slightly different, between 32 and 34 (Column Total
PRAW ). However, these differences do not affect the executability
of the schedules that respect the dependencies (see results for RQ3).

Figure 7 shows the Pareto front plotting the ratio between false
and missing dependencies, for each configuration. Each point repre-
sents the average ⟨missing, false⟩ values across all subjects, normal-
ized over the respective maximum values. This essentially shows
the tradeoff between the false dependencies remaining after the
filtering step and the missing dependencies to be recovered.

From the analysis of the Pareto front, we can see that the non-
dominated configurations are those based on NLP-Verb, NLP-Noun
and String Analysis (SA). The baseline approach (Baseline) has the
highest number of false dependencies (536 on average) and no miss-
ing dependencies. On the contrary, SA filters many dependencies
(393 on average) but has the highest number of missing/recovered
dependencies (11 on average). Interestingly, NLP-Verb (Original
Order) does not miss any manifest dependency but has more false
dependencies compared to the other NLP-based configurations.
Configurations NLP-Dobj (both SA and Original Order) and NLP-
Noun (both SA and Original Order) are comparable regarding the
number of false dependencies remaining after filtering. However,
NLP-Noun (SA and Original Order) needs to recover substantially
less manifest dependencies. Indeed, NLP-Noun dominates NLP-
Dobj, while both NLP-Noun (SA and Original Order) configurations
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Table 3: Effectiveness (RQ1), Performance (RQ2) and Parallelization (RQ3) average results across all subject test suites.

Effectiveness Performance Parallelization
Manifest Deps. Validation Speed-up (%)
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Baseline (Original Order) 536 - 536 504 32 0 0 32 0.00† - 424.7∗ - 424.70 - 30 2.2× 7.1×
String Analysis 494 393 101 69 21 10 1 32 0.10 0.00 162.02 5.21 167.33 61% 30 2.4× 7.1×
NLP-Verb (Original Order) 535 119 416 384 32 0 0 32 0.00† 0.04 307.20 1.27 308.51 27% 30 2.2× 7.1×
NLP-Verb (String Analysis) 494 113 381 348 32 1 0 33 0.09 0.04 281.10 1.28 282.50 33% 30 2.2× 7.1×
NLP-Dobj (Original Order) 536 362 174 140 27 6 1 34 0.00† 0.24 134.90 3.46 138.60 67% 29 2.1× 6.7×
NLP-Dobj (String Analysis) 494 343 151 117 27 5 2 34 0.09 0.23 129.20 9.10 138.62 67% 29 2.1× 6.7×
NLP-Noun (Original Order) 536 364 172 140 28 3 1 32 0.00† 0.05 123.30 2.52 125.87 70% 29 2.1× 6.7×
NLP-Noun (String Analysis) 494 351 143 110 28 4 1 33 0.08 0.04 116.10 4.08 120.30 72% 29 2.1× 6.8×
∗
only validation, no within-recovery.

†
execution time < 0.01 minutes (0.6 seconds).

are on the non-dominated front, being both optimally placed in the
lower-left quadrant of the Pareto plot.
Performance (RQ2). Table 3 (Performance) reports the average
runtime, in minutes, of each step of TEDD across all configurations.
The most expensive step of TEDD is validation, especially for what
concerns validating the connected part of the graph (Column 12),
whereas dependency graph extraction and filtering (Columns 10
and 11) have negligible costs (under one minute on average in all
cases). The cost of disconnected components recovery (Column 13)
is generally low, ranging from nearly one minute for NLP-Verb to
maximum nine minutes for NLP-Dobj (3.8 minutes on average).

The slowest configuration of TEDD is NLP-Verb (Original Order)
which is 27% faster on average (almost 2 hours less) than the baseline
approach. The fastest configuration of TEDD is NLP-Noun (SA)
which is 72% faster on average (5 hours less) than the baseline
approach. This result confirms the Pareto front analysis, showing
that NPL-Noun (SA) is the most effective configuration of TEDD.

The table reports also the percentage decrease of each config-
uration with respect to the baseline, which took approximately
425 minutes on average (≈7 hours). Overall, all SA- or NLP-based
configurations of TEDD are significantly faster.
Parallel Test Execution (RQ3). Column 15 (schedules) reports the
average number of test schedules obtained from the final TDGs.
Isolated nodes in the dependency graphs are counted as (single-
test) schedules. Columns 16 and 17 report the relative speed-up of
the parallelizable test suites considering the longest test execution
schedule (worst-case) and the average case.

First, in our experiments, no test failures occurred in any of the
parallelizable test suite produced by any configuration of TEDD. Es-
sentially, this testifies that the dependency validation and recovery
algorithm does not miss any manifest dependency.

Overall, all techniques achieve similar speed-up scores, around
2× in the worst case and 7× on average. This is expected since the
final TDGs are similar across configurations (see total number of

Table 4: Parallelization results for NLP-Noun (SA)
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Claroline 75.1 36 29.0 2.7× 9.4 8.3×
Addressbook 40.2 24 20.1 2.0× 8.8 4.5×
PPMA 51.7 22 21.1 2.4× 8.9 5.8×
Collabtive 297.7 37 133.1 2.3× 53.2 5.7×
MRBS 56.9 20 28.7 2.0× 13.8 4.2×
MantisBT 184.5 37 133.8 1.4× 15.1 12.3×

Total 706.1 176 365.9 2.1×* 109.2 6.9×*

*
average

manifest dependencies in Table 3). However, results differ across
applications. Table 4 presents the results for the NLP-Noun (SA)
configuration. Column runtime original reports the execution time
of the original test suite in seconds. Collabtive has the slowest
test suite (almost 5 minutes) whereas Addressbook has the fastest
(40 seconds). The highest speed-up in the worst-case occurs for
Claroline, where the longest test execution schedule test suite is
2.7× faster. MantisBT exhibits the highest speed-up in the average
case (12.3×), but the lowest speed-up in the worst-case (1.4×) due to
a single slow-executing schedule (133 s) with respect to the average
runtime (15 s). The lowest speed-up in the average case occurs for
MRBS, but it remains still high (4.2×).
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4.4 Threats to Validity

Using a limited number of test suites in our evaluation poses an ex-

ternal validity threat. Although more subject test suites are needed
to fully assess the generalizability of our results, we have chosen
six subject apps used in previous web testing research, pertaining
to different domains, for which test suites were developed by a hu-
man web tester. Threats to internal validity come from confounding
factors of our experiments, such as test flakiness. To cope with pos-
sible flakiness of the test cases, we manually fixed any flaky test by
adding delays where appropriate and we ran each test suite 30 times
to ensure having identical results on all executions. With respect
to reproducibility of our results, the source code of TEDD and the
Docker containers for all subject systems are available online [38],
making the evaluation repeatable and our results reproducible.

5 DISCUSSION

Automation and Effectiveness. Our results confirm that (1) E2E
web tests entail test dependencies, (2) such dependencies can be
identified by considering PRAW connections between test cases,
and (3) TEDD can successfully detect all PRAW test dependencies
necessary for independent test case execution. All proposed filtering
techniques proved both very fast and effective at reducing the size
of the initial graph, without filtering many manifest dependencies.
Performance andOverhead.All configurations of TEDD achieve
substantial improvements with respect to validating the graph ex-
tracted from the original ordering, whose validation cost is qua-
dratic on the number of test cases. During software evolution,
when the test suite is modified, our analysis does not need to be
re-executed from scratch, as TEDD can harness the dependency
information given by a previously validated TDG. Validation and
recovery, on the other hand, must be carried out on the entire newly
produced TDG, even though the validation cost is expected to be
low, if partial and incremental changes of the test suites are made.
Test Smells. Our test dependency graph can also be utilized for
other test analysis activities such as detecting poorly designed or
obsolete tests (i.e., test smells [40]). For instance, in PPMA, the
test checkEntryTagsRemoved executes after addEntryTags and
removeEntryTags tests. By analyzing theTDG produced by TEDD
for this test suite, we noticed that checkEntryTagsRemoved ex-
ecutes properly also when no tags have been created yet (i.e.,
checkEntryTagsRemoved is isolated in the TDG). This means that
the test checkEntryTagsRemoved is obsolete because subsumed
by the previous removeEntryTags test. Therefore, it can be safely
removed with no impact on the functional coverage or assertion
coverage of the test suite.
Limitations. TEDD depends on the information available in the
test source code, used to identify potential test dependencies. As
such, the effectiveness of our NLP-based filtering may be under-
mined if test case names are not descriptive, as in the case of many
automatically generated test suites (e.g., test1, test2). In such
cases, testers can rely on the string analysis configuration of TEDD
(SA), which also proved effective in our study. Second, our tool does
not provide information about the root cause of the dependencies,
i.e., what part of the program state is polluted by which test. Lastly,
TEDD does not support the analysis of flaky test suites.

6 RELATEDWORK

Test Dependency Detection. Different techniques have been pro-
posed recently to detect dependencies in unit tests (which is related
to the overall problem of test flakiness [3, 19, 20, 22, 29, 35]), none
of which focuses on web tests. Zhang et al. [42] developed DTDe-
tector, which detects manifest dependencies in JUnit tests with a
dependency-aware k-bounded algorithm. They showed that a small
value for k (e.g., k = 1 and k = 2) finds most realistic dependent
tests. The tool VMVM [1] uses test virtualization to isolate unit
tests of a JUnit suite, by resetting the static state of the application
to its default before each test execution. Our tool TEDD, differently
from the previous works, targets the web domain by focusing on
dependencies due to read-after-write operations performed on per-
sistent data. ElectricTest [2] utilizes dynamic data-flow analysis to
identify all conflicting write and read operations over static Java
objects. On the contrary, in E2E web tests, the semantics of read
and write operations is implicit and mediated by multiple layers of
indirection such as client-side DOM, server-side application state,
database entries, and remote service calls. TEDD leverages heuris-
tics based on sub-use-chain relations and NLP to discover potential
test dependencies without the need for complex data-flow analysis.

Pradet [12] detects test dependencies in Java unit tests focusing
on manifest dependencies that can be traced back to data depen-
dencies. TEDD adopts a similar approach as Pradet to validate the
test dependencies, i.e., validating a single dependency at a time by
inverting the dependency and linearizing the graph.

The main differences between Pradet and our approach are
(1) the capability of TEDD to handle incomplete dependency graphs;
Pradet makes the assumption that the initial dependency graph
contains all manifest dependencies computed through static analy-
sis of all (read/write) accesses to global Java variables. Due to this
assumption, (2) Pradet only removes false dependencies and it does
not recover any missing dependencies. TEDD, on the other hand,
features a novel recovery algorithm to detect and validate all poten-
tially missing manifest dependencies, which makes it suitable for
web E2E test suites, in which applying thorough data-flow analysis
is neither feasible nor straightforward, due to the heterogeneity
of technologies and languages used in modern web applications.
Lastly, (3) TEDD introduces novel extraction and filtering heuris-
tics, which extend the applicability of Pradet beyond read/write
operations performed on static fields of Java classes.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we introduce a novel notion of persistent read-after-
write (PRAW) dependencies, which extends the standard notion of
RAW dependencies for the web domain. Then, we propose a test
dependency technique for E2E web test cases based on string anal-
ysis and NLP implemented in a tool called TEDD. TEDD achieves
an optimal trade off between false dependencies to be removed
and missing dependencies to be recovered in six web test suites.
In our future work, we plan to apply NLP on the DOM and on
page object-based test suites [36], as well as to devise ways to pro-
duce a minimal TDG, i.e., a TDG having the minimum number of
dependencies.
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